Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/1077 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: An investigation of the formation of turbulent water and abrasive water jets
Author: Khan, Md. Ekramul Hasan
View Online: njit-etd1994-025
(xvii, 122 pages ~ 8.3 MB pdf)
Department: Department of Mechanical and Industrial Engineering
Degree: Doctor of Philosophy
Program: Mechanical Engineering
Document Type: Dissertation
Advisory Committee: Geskin, E. S. (Committee chair)
Chen, Rong-Yaw (Committee member)
Harnoy, Avraham (Committee member)
Levy, Nouri (Committee member)
Gordon, Eugene I. (Committee member)
Date: 1994-01
Keywords: Turbulence
Nozzles
Water jets
Availability: Unrestricted
Abstract:

This study is concerned with the development of a knowledge base for the selection of nozzle geometry by investigating the mechanism of formation and behaviors of water and abrasive water jets. A numerical prediction of turbulent water flow inside various nozzles is developed. The analysis is based on the numerical solution of conservation equations of continuity and momentum as well as equations of turbulent kinetic energy and dissipation for 2-dimensional axisymmetric flow by using a finite element package, FIDAP.

The technique for determining velocities and forces of water jet and abrasive water jet with the Laser Transit Anemometer and Piezoelectric Force Transducer is validated by numerical prediction from the formulation indicated above. The velocity ratio of abrasive to water particle is about 0.45-0.65 which primarily depends on the alignment of the carbide tube and sapphire nozzle as well as on the mixing process.

The numerically predicted velocity at the nozzle exit complies generally well with the experimental data. The converging nozzles produce a concentrated high velocity jet which can be used for conventional cutting operations whereas the nozzles with diverging section produce cavities and circulation around jet which can be used for cleaning and polishing purposes. The conventional nozzle is diverging type and produces jets with a pulsing nature having particles accumulated and segregated cavities inside the jet as identified by high speed filming. The integration of experimental and numerical results provide a knowledge base for the nozzle design in various industrial applications.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003