Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/1875/ in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Non-contact measurement for thermal conductivity of diamond-like and hard carbon thin films
Author: Qin, Ganming
View Online: njit-etd1993-135
(vii, 40 pages ~ 1.2 MB pdf)
Department: Department of Physics
Degree: Master of Science
Program: Applied Physics
Document Type: Thesis
Advisory Committee: Chin, Ken K. (Committee chair)
Hensel, John Charles (Committee member)
Gordon, Eugene I. (Committee member)
Date: 1993-05
Keywords: Diamond thin films
Diamonds, Artificial
Heat -- Conduction -- Measurement
Availability: Unrestricted
Abstract:

In this research work, non-contact temperature measurement was applied to determine the thermal conductivity of diamond-like and hard carbon thin films. Dielectric materials widely used as thin films in device manufacturing are SiO2, Si3N4, polymer, and etc. However, their heat dissipating capacity is not good for power devices. It is necessary to develop a new material for this purpose. Diamond crystal is a high quality dielectric material. It has the highest room-temperature thermal conductivity [k=20W (cm · K) at 20°C] among all materials. In addition, it has high electrical resistivity ( >1016 Ω · cm) and high strength [1]. So, diamondlike film is the first candidate for this purpose. Two methods were reported to measure the thermal conductivity of diamond-like films [2, 3]: a DC technique [4] and an AC (or 3ω) technique [5,6]. In these methods, the temperature was measured by thermocouple or thermal resistor. The accuracy of the measurement will be affected by the leads of the sensors, since thermal energy will be transferred through the lead wires. This restricts the technique samples of thickness >5 μm. In practice, the thickness of diamond-like films used in power device applications is about 1 um or even less. In our experiment, contactless temperature measurement for thermal conductivity of diamond-like and hard carbon thin films was introduced to measure the samples with thickness of 2μm. The experimental results show that this method is useful to study thermal conductivity of diamond-like and hard carbon thin films. In the thesis, fundamentals of thermal detection are reviewed; the design, procedure, and validity of non-contact measurement method are presented; and experimental results are reported and discussed.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003