Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/1406 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: An investigation of electrical and optical properties of reactively sputtered silicon nitride and amorphous hydrogenated silicon thin films
Author: Kim, Tae Hoon
View Online: njit-etd1988-017
(vii, 84 pages ~ 3.3 MB pdf)
Department: Department of Electrical Engineering
Degree: Master of Science
Program: Electrical Engineering
Document Type: Thesis
Advisory Committee: Sohn, Kenneth (Committee chair)
Cornely, Roy H. (Committee member)
Ball, W. H. Warren (Committee member)
Date: 1988
Keywords: Thin films --Electric properties.
Thin films --Optical properties.
Sputtering (Physics).
Availability: Unrestricted
Abstract:

Thin films of silicon nitride and amorphous hydrogenated silicon were prepared by radio frequency reactive sputter deposition and their properties optimized for their use as low temperature passivation coatings for optoelectronic devices. The effect of various sputter deposition parameters on the conduction and optical properties were studied. Infrared spectrophotometry and ellipsometry were used to determined the optical properties of the films whereas the electrical properties were determined from current-voltage measurements of MIS capacitors.

Typical parameters of a sputter deposition run for the best Si3N4 films were: base pressure, 1-2x10-6 torr; sputtering pressure, 5 mtorr; nitrogen partial pressure, 16.5%; cathode anode gap, 10 cm; target power density, 1.97watts/cm2; and cathode voltage, 1.0 kvolts. Films of thickness 50-120nm, refractive index 1.94-2.2, and low conductivity (resistivity of 1011 Ω-cm) were obtained. The deposition rate was in the ranged of 5-8 nm/min depending on the sputtering pressure, the appied target power, and the nitrogen partial pressure. It was concluded that the quality of the silicon nitride films is strongly dependent on the total deposition pressure, nitrogen partial pressure, applied target power voltage, and possibly cathode voltage. It was also concluded that the water vapor background was the major factor in increasing the conductivity of the best films to values about three orders of magnitude above those for the best bulk silicon nitride material.

Typical sputtering parameters for depositing a-Si:H films were: base pressure, 1-2x10-6 torr; sputtering pressure, 7 mtorr; hydrogen partial pressure, 5-20%; cathode anode gap, 7.6 cm; r.f. target power density, 1.58-1.82 watts/cm2; cathode voltage, 1.8-1.9 kvolts. Films of thicknesses 78-150 nm, refractive index 3.25 - 4.0, and strong absorption at 2000 cm-1 of infrared spectra were obtained. It was concluded that stoichiometric a -Si:H films can be prepared by reactive sputtering of a silicon target in the environment of argon and hydrogen.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003