Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/1253 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Correlation of thixotropic parameters and related tests of blood from human subjects
Author: Fabisiak, Walter
View Online: njit-etd1980-003
(vi, 99 pages ~ 3.4 MB pdf)
Department: Department of Chemical Engineering and Chemistry
Degree: Doctor of Engineering Science
Program: Chemical Engineering
Document Type: Dissertation
Advisory Committee: Huang, Ching-Rong (Committee chair)
Chen, Hung T. (Committee member)
Kristol, David S. (Committee member)
Martin, James L. (Committee member)
Perna, Angelo J. (Committee member)
Date: 1980-05
Keywords: Blood--Analysis and chemistry.
Thixotropy--Measurement.
Blood--Viscosity--Measurement.
Availability: Unrestricted
Abstract:

The flow behavior of human blood is an important facet of the circulatory system as it affects all of the organs of the body. The rheological properties of whole blood provide a means of analyzing the flow of red cells and plasma through the microcirculation. A recently observed rheological characteristic of whole human blood is thixotropy, a time-dependent phenomenon. This phenomenon is caused mainly by the redistribution of an aggregated form of erythrocytes, known as rouleaux, and the non-aggregated, single erythrocytes. In order to further define and analyze the thixotropic properties of blood, the Huang model is used to quantitatively characterize the rheological behavior and relate recorded alterations in blood viscosity at low shear rates to the biophysical parameters of blood elements. Analysis of the various parameters defined by the rheological equation is used to characterize the flow properties of whole blood and provide quantitative comparison among blood samples under a variety of clinical conditions.

Rheological determinations and standard clinical hematological evaluations were performed on sixteen normal subjects and compared with similar data obtained from patients suffering from either polycythemia, Parkinson's disease, or hypertension. In addition, the data of thirteen normal males was compared to that of a group of apparently healthy males who exhibited high levels of one or more of the following coronary risk factors: cigarette smoking, serum cholesterol and diastolic blood pressure. Data analysis for the sample groups was performed for the mean and variance of the group value. Analysis of variance was performed using the standard F-test, and the Student t-test for small sample sizes was used to test for significance in the difference of means.

An analytical solution of the Navier-Stokes equation is presented for the case of a transient flow curve using a Couette geometry. Analysis of the solution indicates that it is possible for a Newtonian fluid to exhibit a hysteresis loop effect in its flow curve under certain experimental conditions. The size and shape of the generated loop was found to be controlled by a dimensionless group. This analysis can be used to detect and eliminate the presence of any artificial hysteresis loop effects such that the true non-Newtonian behavior of a material may be examined.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003