Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/1287 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Adaptive, differential pulse-code modulation for speech processing
Author: Cummiskey, Peter
View Online: njit-etd1973-005
([x], 168 pages ~ 4.1 MB pdf)
Department: Department of Electrical Engineering
Degree: Doctor of Engineering Science
Program: Electrical Engineering
Document Type: Dissertation
Advisory Committee: Ball, W. H. Warren (Committee chair)
Assadourian, Fred (Committee member)
Russell, Frederick A. (Committee member)
Barkan, Herbert (Committee member)
Date: 1973-06
Keywords: Pulse-code modulation.
Availability: Unrestricted
Abstract:

The objective of the research reported here is the design of efficient speech coders that can easily be implemented in integrated circuit hardware. Companding techniques like those introduced by M. R. Winkler, J. A. Greefkes, F. DeJager, A. Tomozawa and H. Kaneko were explored along with a large body of theory concerning the application of linear prediction to speech coding.

The best features of the speech signal to be measured and coded are the overall amplitude, the resonant frequencies and dampings of the vocal cavity and the fundamental frequency of the vocal cord oscillations. Adaptive quantization was used to track variations in overall amplitude, and adaptive prediction was used to track the frequencies and dampings of the cavity resonances. No attempt was made to exploit redundancies related to the vocal cord oscillations, however.

An adaptive differential pulse code modulator (i.e., an ADPCM coder) with a fixed integrator was simulated first. Later a hardware model was constructed, signal to noise measurements were taken and subjective tests conducted. When operating at 4 bits per sample, speech of a quality nearly equal to that of 7 bit log PCM was regenerated by the ADPCM encoder. At 3 bits per sample speech quality was nearly equal to 6 bit log PCM.

Further improvements were achieved with the application of adaptive predictors in place of the integrator. The predictor coefficients form a vector which is adapted in a direction away from the gradient with respect to the error power. By applying this technique to the quantized signals occurring in the coder, the coefficients are derived from the quantized error signal; hence, there is no need to transmit them.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003