
COMPUTERIZED CONFERENCING
& COMMUNICATIONS CENTER

at

NEWJERSEY
INSTITUTE OF TECHNOLOGY

PROGRAMMING LANGUAGE REQUIREMENTS

FOR

HUMAN COMMUNICATION STRUCTURES

OR

COMPUTER CONFERENCING

RESEARCH REPORT NUMBER 5

by

PETER GORDON ANDERSON

c/o Computer & Information Science Department

New Jersey Institute of Technology

323 High Street, Newark, N. J. 07102

PROGRAMMING LANGUAGE REQUIREMENTS

FOR

HUMAN COMMUNICATION STRUCTURES

OR

COMPUTER CONFERENCING

by

Peter Gordon Anderson

January, 1977

Department of Computer and Information Science

RESEARCH REPORT NUMBER FIVE
COMPUTERIZED CONFERENCING
AND COMMUNICATION CENTER

NEW JERSEY INSTITUTE OF TECHNOLOGY
323 High Street

Newark, New Jersey 07102

A detailed publication form. Copies may
be obtained for $3.00 by writing the
RESEARCH FOUNDATION at NJIT. (Checks
payable to the Foundation at NJIT)

TABLE CF CONTENTS

Page

I. INTRODUCTION 	 1

II. GENERAL LANGUAGE REQUIREMENTS 	 2

III. EXTENSIBLE LANGUAGES 	 6

IV. EXAMPLES OF UTILITY OF EXTENSIONS 	 17

V. AN IMPLEMENTATION TECHNIQUE 	 19

VI. THE COMMUNICATION NETWORK 	 33

VII. BRIDGE 	 39

VIII. EXAMPLES OF COMMUNICATION STRUCTURES AND

CONCLUSIONS 	 43

IX. REFERENCES 	 46

I. INTRODUCTION

Our overall goal is to be able, simply and quickly, to construct com-

puter conferencing systems for new requirements, applications, and even

experimental ideas or fantasies. One way to view this requirement is as

the creation of a highly parameterized conferencing system itself. Our

view, however, is that of a programming language; i.e., an integrated nota-

tional system for the specification of communication structures and the

associated actions or computation to be taken by the computer system

hosting the structure.

A communication structure consists of a group of people (and storage

devices) each endowed with some characteristics, and some means of person-

to-person communication. We view the expression of such structure as a

set of rules, R (a,b,c), that expresses the actions to be performed in case

a participant of characteristics -a sends a communication of type -b

to a participant (or set) of characteristics - c. These rules and char-

acteristics may change over time -- a dynamic structure.

The new language to be developed must be able to express the forma-

tion of these rules (the details can be supported, of course, by existing

coding systems). It must support the organization of such a scheme of

dynamic rules.

This Report details the consideration (and examples) for such a lan-

guage that we have unearthed in our studies.

1

II. GENERAL LANGUAGE REQUIREMENTS

We understand the main issues for the lower level language, i. e. ,

the one for system programming. They are the features that systems

programmers give up when they abandon assembly languages.

Data types include integers and bit and character strings, and re-

cord type and one-dimensional array data aggregates. Structured program-

ming control sequencing and subroutines are needed.

There is, however, a large unknown component when we attempt to

fit a language to the higher-level requirements, for here is the research

border. Our answer to this issue, which will permit us to proceed rather

than stagnate and "research" is to investigate and construct a highly flexible

general system into which language features can be put (temporarily for

evaluation as well as permanently for proved value).

A. THE IDEAL PROGRAMMING LANGUAGES

A language--natural or artificial--is a tool for human thinking and for

communication with other beings. Some languages are more adequate to

the task than others, richer, more expressive, more helpful, closer to the

problem at hand, more natural, easier to manage, more readable, and

more writable. But no language is perfect, and none is likely to be so.

When a better language is made available, better people come forth with

better ideas, and it's a sure bet that they better the language. No language

inventor can foresee all the uses the language will be faced with, and even-

tually (more sooner than later) the users find themselves simulating the

tools that they wish were built-in facilities. Thus, the FORTRAN user

- 2 -

clumsily works with character strings, push down stacks, linked lists,

recursive processes, and laborious translates Dijkstra-dicta into condi-

tional GOTO's.

What to do? Make the richest language imaginable at the time, and

provide for an orderly growth process? That is known as the PL/1 answer.

PL/ 1 is the answer to the FORTRAN programmer's prayer, or is it the

gods driving mortals mad by granting their every wish? There is plenty of

evidence for the latter assertion. PL/1 has such an embarrassment of

riches that few users know them all, and this ignorance is paid for by a high

coefficient of surprise. It's far from bliss for the user of "the engineering

application subset" to find that 25+1/3 gives a fixed point overflow. (What's

fixed point overflow, you ask? It's what you get from not using 25+1/03.)

The goodies in this cornucopia are not pairwise independent; there is

much tripping over each other to be avoided and feared.

There is another side. The true professional must be a master of

his tools or have an expert on call. There are such people. But they pre-

sent the most damning evidence against granting one's every wish--each of

these experts has a personal wish list of 50 desirable features and fixes for

PL/1 (no, these lists don't overlap much). (cf. The Magic Fish.)

What can we do to get the tools powerful enough for our tasks? We

understand that coding in some programming language is no substitute for

designing. Yet we must design (think, notate) in some language whose form

is usually formed by our conception of the problem, its requirements, and

- 3 -

constraint. Designing proceeds by an iterative process of elaboration of

the details of the problem solution until it's available for computer pro-

cessing. This is the process known as "programming by successive refinement,"

or "top-down programming. " A high-level programming language is a device

to permit this iterative elaboration to terminate as early as possible.

An alternative to the everything-language, or PL/∞ , is a means

whereby a programmer can take a simple programming language and endow

it with the features needed for the problem at hand. This is not as far-out

as it may appear. At a primitive level, every programming language that

allows programmer-defined functions and subroutines has such a feature--

and that includes most programming languages. The most glaring exception

is Assembly language, but even that is redeemed if it has a macro pre-

processor. The first macro to invent is subroutine-call, and from then on we're

competing on an equal basis.

B. PROPERTIES OF A V. H. 0. L.

A Very High Order Language (V. H. 0. L.) functions at the level of the

user's problem area. A user can use his own notation and terminology. It

imposes no requirements to simulate macro steps at the source level. For

instance, a message may have a SENDER, a CONTENT, and a set of RE-

CIPIENTS, all of which are invoked at this level. The user need never re-

sort to an explicit handling of substructures or support mechanisms (e. g. ,

pointers, indices, addresses, loop counters, etc.).

The system automatically fills in correct assumptions (BASIC,

- 4 -

FORTRAN, and PL/1 hint at this with their providing syntax for the source

names of the various data types and contextual declarations for procedures

and files). Even when assumptions can't be filled in automatically, the

system must provide the user an out. It must avoid aborting the run, for

• instance by dynamically passing unknowns to the user for interpretation.

The principal requirement is for a flexibility of design, not necessar-

ily a senscient computer. For instance, an unspecified function can be pro-

vided a "stub" by the system and a V. H. 0. L. translator must allow a wide

variation of expression. Names should be spellable in different ways;

e. g. , abbreviations. Calling sequences should be of many alternative styles,

from assembly form to PL/1 form, to cookbook form ("add gravy made like

the previous recipe, but omitting the salt"). All of the following should be

legal and mean the same thing:

CALL INIT (SCORE)

• INITIALIZE SCORE

NEXT, INITIALIZE THE SCORE

Similarly, when a procedure requires arguments of different data types,

these should be expressible in arbitrary order, as:

GIVE PLAYER THE GOODBYE SPEECH.

GIVE THE GOODBYE SPEECH TO PLAYER.

If an argument can be determined by context, it shouldn't need to be given

explicitly:

WHEN ANY PLAYER PASSES GO, PAY $200.

- 5 -

III. EXTENSIBLE LANGUAGES

In order to provide the highest level language necessary for our

ends without having to make irrevocable decisions early in the project,

we propose an extensible language facility.

It is crucial that flexibility be maintained and that progress be made.

Hence, we must identify what decisions we can make or need to make at

this time that will not be changed. These decisions are: we are to con-

struct programming tools, or "languages," for people with a wide variety

of skills who will construct, modify, and use computer conferencing systems.

These decisions then entail the construction of a systems programming

high order language, the identification of conferencing primitives ("run

time system"), and the development of a methodology for language con-

struction.

This methodology constitutes the outstanding aspect of our study;

namely, our language system must contain within itself the means for de-

fining new constructs and redefining existing ones.

An Extensible Language

A classical approach to problems such as ours is to give up a pro-

gramming language which serves as a problem-oriented-language for a

highly restricted problem area. (In our case, we may argue, it's not so

restricted. Our application area encompasses a multi-programming ex-

ecutive scheduler, user interfaces, data base management, statistical data

collection and reduction, etc. , etc.). What results is an ad hoc curiosity

- 6 -

of limited value outside of that individual research project and that particular

team of dedicated researchers--dedicated to their research project and to

the virtues of "their own" programming language.

So much effort goes down the drain, even if the higher-level-language

constructed has obvious merit to users outside its own community. Results

and capabilities that transcend a parochial application are needed for a

higher-level-language to live. As is the case in so many other areas of

software requirements, the needed attribute is flexibility.

Therefore, in this document we propose a family of computer-program -

ming languages; we show some members of the family; and we describe how

other members of the family arise. The family conceivably contains a mem-

ber suitable for any given application area, but not necessarily a member

suitable for every application area.

In our particular application area, there will be areas of programming

which would best be handled with different programming languages. But

our approach will be to identify members of the same larger family as the

suitable tools for the different applications. (Examples of such disparate

areas within our activity are: multi-user scheduling and text-editing.)

This approach stands in sharp contrast with the PL/1 approach, in which

every application area was to be serviced by a suitable subset of the whole

language. The unfortunate result was a high surprise factor for the user

who had not mastered the encompassing language and tried to concentrate

only on his own subset. Furthermore, the compiler and run-time-system

- 7 -

are unwieldly large. Users pay for the parts of the language they don't

employ. (There seems to be a trend towards improvement in this area.

However, some investigators believe the cost of unused components is

guaranteed to burden the user for a long time to come.)

Our research will be directed towards the discovery and creation

of an extensible language. This is a system consisting of a loose language

along with a mechanism for introducing new language constructs.

The base language will be an extension of Fortran, since we are

currently working exclusively on a computer with an excellent "Fortran V"

which permits escape to assembly language instructions mixed in with the

Fortran source statements. Although this mechanism is an extremely

tricky one to use reliably, it does give us a running start as with a poor

man's extensible- programming language. Their mechanism is provided

by a classical cascade compiler: The Fortran translator produces assem-

bly language input and simply copies over the non-Fortran code to be handled

by the latter processor. This feature permits a language extension mechan-

ism to be included in several ways, two of which are particularly easy in

this context:

1. A pre-processor (cf., PL/1's compile-time facility) can be pro-

vided to translate new constructs into assembly language code at

the Fortran source level.

2. Macros, as well as novel assembly language psuedo-operations,

can be provided at the FORTRAN output level.

- 8 -

A. SOME EXISTING LANGUAGE EXTENSION MECHANISMS

If we look at this issue from the correct perspective, we can see

language extension mechanisms in all existing programming languages. In

fact, a High Order Language itself can be viewed as a mechanism for extend-

ing the functionality of the underlying hardware and software.

1. A fundamental concept of extension mechanism is that of the subroutine.

This notation is the most important advancement ever put forward for

"software engineering. " We say that not only for its obvious advantages

for work sharing, using canned programs, and core savings, but also for

its introduction of the mental tool of abstraction and generalization into

the software business. We are given the privilege to use abstraction the

same way we could use physical objects.

To a large extent, subroutine invocations are used to implement

language extensions that are not on their faces subroutine calls. We men-

tioned above the variations on invocation syntaxes; the possibilities are limit-

less here.

2 New operators form an obvious class of extensions. The profusion of

built-in operators in APL suggest many useful forms to us (except that we

prefer to introduce a means rather than pre-suppose everyone's desired

end).

The Extended Algol translator supplied by Data General for their Nova

and Eclipse mini computers allows the programmer to declare new operators,

provide them with a priority, and give a subroutine to be invoked for evalua-

tion.

- 9 -

The Algol approach is static. SNOBOL 4 allows the running program

to modify the meaning of any operator, where an "operator" is understood to

be one of a class of special symbols with system supplied priorities. Several

of these operators (e. g., +,-, *, /) have an initial but changable meaning, and

several others have no initial meaning (e. g. , #, Q).

3. Assembly languages are often provided with Macro expanders which

allow new opcodes to be defined in terms of existing opcodes (including

other macros). The general form of this feature is the definition of a

parameterized procedure for generating code, which depends upon the

form and attributes of the invoking parameters and the state of the macro

expander system at (expansion) invocation time.

4. Parameterization refers to the facility for writing general programs in

which constant configurations are replaced by symbolic names to be re-

placed during compilation with the desired values. This feature is a part

of the proposed 1976 Fortran revision, where it takes the form

"PARAMETER X = 10, Y = 20"

and the parameters may be used, for instance, as

DIMENSION A(X, X), B(X, Y), C(Y, Y)

EQUIVALENCE (Q, C (X, X))

DO 1000 I = X, Y

and so on.

Parameters are given to assembly programmers by means of the

EQU-statement. A less well understood parameterization is found in the

- 10 -

assembler (e. g., for IBM/ 360) DSECT facility where storage forms are

defined but not allocated.

5. Libraries may also be considered extension tools. A library can be the

home of the macro definition, the subroutines, the EQU-statements, and so

on. Many language systems are equipped with an INCLUDE or COPY

pseudo-op that is used t o bring together portions of a program from

outside libraries.

6. A special extension mechanism that needs to be mentioned, although

many of its features are covered above from modified viewpoints is the

PL/1 precompiler. This tool permits its user to describe, in a PL/ 1 type

notation, the form of the PL/ 1 source program to be generated and com-

piled. It supports integer and character string function procedures and

operations. In addition to explicit calls, it supports "active" variables

which are evaluated into preprocessor source; that is, they are converted to a

character string value and that character string is re-scanned, looking for

more active variables to be replaced.

7. The computer science world abounds with other examples. Meta-as-

semblers are a fascinating example, but rather ill understood. Examples

are "Fergason's Language, " RCA's PLASM, and Xerox's Sigma series

assemblers.

B. A MODEST APPROACH TO EXTENSIBILITY

As a modest initial step, we identify some of the particularly valuable

extension mechanisms which can be gotten inexpensively.

- 11 -

1. INCLUDE source from a library (cf. "COPY" in COBOL and Assembly).

All that would be needed for this feature is for the compiler or a pre-

processor to open a file in a library and merge source lines with the user

supplied source. There should be provision made for the INCLUDED infor-

mation to have in it INCLUDEs of other files This makes the effort only

slightly non-trivial; a few files may have to be open simultaneously, and

the merging mechanism would have to incorporate a push down stack or

be encoded recursively, But this entails little sophistication.

The utility of such a facility is not evident for small ("toy") projects,

but for ones of the size we are planning it would allow a flexibility and

management control otherwise almost unobtainable through FORTRAN.

In particular, the major data structures embodied in COMMON, DIMENSION,

EQUIVALENCE, and type statements need only be maintained by project

leaders ("Chief Programmers") and not accessible to unauthorized coders.

If decisions are reversed, the INCLUDE files have the only source code

that needs to be changed. All that remains is a universal re-compilation

without human intervention).

2. PARAMETER statements, which allow symbolic use of compile time

constants (such as those requisite constants in DIMENSION, COMMON,

and EQUIVALENCE statements) is an easy-to-implement facility for a

compiler or a pre-processor.

3. An enriched facility, taking up where PARAMETER left off, is the

SUBSTITUTE identifies = string, . .

- 12 -

which means that everywhere the "identifier" is detected in the source text,

it is to be replaced by the "string" it is associated with, and that string is

to be re scanned for substitutable identifiers.

Examples of the use of SUBSTITUTE:

a. SUBSTITUTE IJK = (I, J, K)'

A IJK = B IJK + C IJK

b. SUBSTITUTE DEGREES = '*PI/180. '

Z = COS (THETA DEGREES)

c 	SUBSTITUTE DIM = 'DIMENSION', EQ = 'EQUIVALENCE'

DIM X(10, 20), Y(20)

EQ (Y(1), X(5, 1))

C. A LESS MODEST APPROACH TO EXTENSIBILITY

The SUBSTITUTE facility given above is but a hint at a more general

text replacement and generation tool along the lines of Macro assemblers

and PL/ 1's compile time feature. Specifically, the SUBSTITUTED string

needs to depend upon several things:

- user-supplied parameter forms

- attributes and values associated with parameters

- states of other relevant variables in the system

The dependence is not to be restricted to simple formulas, but will be

based upon algorithmic computations performed during substitution.

Macro Processing

This activity is one of a pre-processor nature, and, although it pre-

- 13 -

pares input to a language processor, it does not deeply modify the language

(specifically its semantics). The requirements are that a macro pre-proces-

sor have:

1. Parameter Processing

2. Memory (Global variables)

3. Computational ability (arithmetic and testing)

4. Symbolic typing

5. Storing processing

With these capabilities in a macro processor, much of the facility of a

full-blown extensible language will be available. Direct control of machine-

level object code and optimizations will be unaccessible, but the source

level facilities will permit the users to experiment and determine the use-

fulness of their ideas before a large implementation investment is made.

(The macro processor could, however, output CAL assembly code, to

bypass FORTRAN completely.)

An interesting application is the NEW and OLD value generation idea.

Everytime NEW is referenced in the source, it stands for a different

(unique) value; and everytime OLD is referenced it refers to the most re-

cent reference to NEW. Unique values for "nominal values" can be gener-

ated by:

PARAMETER JOE = NEW, MOE = NEW, BOBO = NEW

and locations in a list can be easily given by

EQUIVALENCE (X, A(NEW)), (Y, A(NEW)), (Z, A(NEW)) .

Thus the system can make decisions for the programmer:

- 14 -

READ A(NEW), B(OLD), A(NEW), B(OLD), A(NEW), B(OLD)

D. AN AMBITIOUS APPROACH TO EXTENSIBLE LANGUAGE

A programming language is known by its data types (and accompanying

operation), its control mechanisms, and its surface form (syntax). The

control and form are (largely) determined once we have chosen a base

language. (Pre-processors can change the looks of something, but they

provide a limited amount of leverage.)

To introduce new data types, consider the simplest example: that

of nominal data. The terminology comes from statistics where it denotes

a finite (small) classification scheme that cannot be treated as numerical

(except via coding, like identification numbers). Examples include: day

of the week, marital status, profession, religion, city, state, blood type,

etc.

To provide nominal types to a language, one needs simply to list all

its values; e. g.,

NOMINAL TYPE COLOR = (RED, BLUE, GREEN, YELLOW)

TYPE COLOR X, Y, Z

The operations are only those of assignment and equality comparisons:

IF (X. EQ. RED) THEN

Y = GREEN

ELSE

Y = Z

Z = YELLOW

ENDIF

- 15 -

A more interesting data type invention must involve directions

(algorithms) for specifying the storage structures to be built and allocated

for data of that type. This could entail some very large (core consuming)

structures, especially for our application involving networks with attributed

modes and arcs as data structures.

The operations can be defined in terms of several of their defining

qualities:

1. The character string defining the operator

2. The syntax of the operator

a. prefix, postfix, or infix

b. priority

3. The data type of its operand(s)

4. The data type it returns

5. The rules for its evaluation

In the current document, we shall not presuppose mechanical linguistic

form for such specification, but rather proceed with a list of examples

to show the utility of such a method and, hopefully, suggest some forms

for its realization.

- 16 -

(read)

IV. 	Examples of the Utility of an Extension Mechanism

In this paragraph, we will set forth a collection of examples of desire-

able features for a high order language that we would like to achieve through our

extensibility mechanisms. These features are not what belongs in any

HOL, but what might be needed at some time, possibly in the forms

shown We stress that this is a goals list, and that we are not proposing

at this point any specific mechanisms to support them.

a. Store within an expression

b. Matrix multiply

c. I/O

d. Stacks

e. Cross Sections of arrays

f. Equality considered as a numeric

g. Swap

h. Virtual variables. These variables have no address permanently associated

- 17 -

with them. By overlaying a virtual variable somewhere in memory

we achieve a template effect. This is similar to FORTRAN's EQUI-

VALENCE, but it is dynamic.

i. Ragged arrays. Usually arrays have the same number of elements in

each of their rows; if not, they are called ragged. These are useful for

small data bases.

j. Nominal variables. These are variables that take on a small, finite set

of values. They can be compared for equality or assigned values.

Examples are sex, religion, region, city, breed, marital status,

color, etc.

k. Queues.

1. Lists.

m. Trees.

n. Hash Tables.

o. Sets.

p. I/O buffers. Data can be added to an I/O buffer; when it's full, it

will flush automatically. Input buffers work the same way, in reverse.

q. Graphs.

r. Diagrams. Extensible languages may be the proper setting for computer

graphics.

s. Formulae. For symbolic calculations.

t. Records. Data aggregates with (possibly) non-homogeneous elements.

- 18 -

V. An Implementation Technique

The burden of this tool could be taken over by a pre-processor for

a cascade compiler (which we have) with an assembly escape clause (which

we have) with a powerful macro expansion facility (which we plan to imple-

ment). There are shortcomings here of an efficiency nature, but the

semantics are available for the initial research. Thus, new (defined)

constructs can be turned over to macro calls by a pre-processor without

having to modify an ill structured compiler.

A. CHOICE OF A BASE LANGUAGE (EXTENDED FORTRAN)

The base language is the tool to be used for systems programming.

It must be powerful enough to write compilers and operating systems. It

must also be amenable to the attachment of self-extension mechanisms.

We are given, on our computer, a FORTRAN system which is imple-

mented by a cascade compiler (i. e., a translator that produces assembly

language source) and consequently easily allows assembly code to be mixed

with FORTRAN source. While this setup is not necessarily ideal (the de-

fects of FORTRAN are well known), this does provide enormous flexibility

of linguistic structure and content. Processors can operate both before

(pre-processors) and after (macro systems) the FORTRAN system itself.

So the FORTRAN compiler need never be touched.

4

- 19 -

There are some minor, but very important modifications that need

to be made to the FORTRAN language of control figures and new data

types.

Required Control Structures

FORTRAN and its dialects force programmers to code up the most

dreadful object code to simulate the control structures we require to do

sensible programming. Largely we intend to obviate statement labels

except for Formats. Specifically we require:

1. The WHILE loop.

2. The conditional group ("IF") .

3. Generalized conditionals ("CASE").

4. Generalized loops.

Denote by C-exp a Fortran IV conditional expression, e.g., the inside of

a logical IF or the right hand side of a logical assignment statement, such

as X(I) . LT. X(J) and A . NE. BLANK . AND. A . NE. COLON.

Next, denote by s-list a sequence or list of Fortran statements or

complete blocks. We expect--except in extreme circumstances--that the

flow chart of this sequence of statements will be a single entry, single

exit process box which has no jumps out or in except by straight flow

(maybe lots of internal jumps).

A WHILE loop is of the form

WHILE (C-exp) LOOP

s-list

ENDLOOP

- 20 -

This is semantically equivalent to

1001 IF (.NOT (C-exp)) GOTO 1000

s-list

GOTO 1001

1000 CONTINUE

A conditional group is of the form

IF (C - exp) THEN

s-list

ENDIF

The conditional group is semantically

equivalent to the Fortran IV

IF (.NOT. (C-exp)) GOTO 1000

s-list

1000 CONTINUE

Style Notes

The list of statements in the s-list above can include complete WHILE

loops and conditional groups. Nesting to any level is OK.

If the current tab stop is to be at card character position N (N=7 at

the start of a program), then the words WHILE and ENDLOOP are coded

starting in position N, but the intervening s-list has N+3 (or N+4) as its

current tab stop. Conditional groups have the same indentation convention.

This makes the nesting of the flow structure evident to the reader.

An automatic formatting routine will be supplied to take care of this indenting

- 21 -

for programmers.

The conditional group is distinguished from the Fortran IV logical

IF by the word THEN.

Generalized conditionals: alternatives (IF-THEN-ELSE)

This takes the form

IF (C-exp) THEN

s -list-1

ELSE

s-list-2

ENDIF

The If-THEN-ELSE construction is semantically equivalent to the following

sequence of FORTRAN' code.

IF (.NOT. (C-exp)) GOTO 1000

s -list- 1

GOTO 2000

1000 CONTINUE

s-list-2

2000 CONTINUE

The ELSEIF construction is added as a convenience to preclude having to

nest several levels of IF statements and thereby confuse the structure.

IF (C-exp-1) THEN

s -list- 1

ELSEIF (C-exp-2) THEN

- 22 -

s-list-2

ELSEIF (C-exp-3) THEN

s -list- 3

ELSEIF (C-exp-n) THEN

s-list-n

ELSE

s-list-n+l

ENDIF

(The ELSE-clause is optional and zero or more ELSEIF-clauses are per-

mitted.) The semantics are that the first true C-exp-k is found and the

corresponding s-list-k is executed. Only one s-list is executed.

The CASE construction is similar to the IF-ELSEIF condition in that

one out of several s-lists is chosen to be executed. In this case, the selec-

tion is on the basis of an integer valued expression.

SELECT integer-expression OF

CASE (i1, 1, i1,2, ... i1,j1
)

s -list - 1

CASE (i2, 1 i2, 2... i2,j2
)

s-list-2

ELSE

s -list -n+1

ENDSELECT

Note the symmetry (one arrow in and one arrow out) which is

missing from Fortran IV's computed GOTO.

Generalized Loop Constructions

The UNTIL Construct

This is a convenience feature which permits one to postpone condition

checking until after the body of a loop has been executed once.

Its form is:

LOOP

s-list

UNTIL (C-exp)

It is semantically equal to the Fortran

1000 CONTINUE

s-list

IF (.NOT. (C-exp)) GOTO 1000

The EXITIF Construction

Often we want to exit from a loop neither at the start nor at the end

(cf. RETURN from other than the end of a SUBROUTINE).

This can be accomplished via:

LOOP

s-list-1

- 24 -

EXITIF (C-exp)

s-list-2

ENDLOOP

For example:

LOOP

fetch input

EXIT (end of file)

process input

ENDOFLOOP

This is semantically equivalent to the following

1000 CONTINUE

s -list-1

IF (C-exp) GOTO 2000

s-list-2

GOTO 1000

2000 CONTINUE

There has been a great deal of effort in the past few years towards

making FORTRAN into a language suitable for expressing "structured

programming" constructs. Such work has been done on the FORTRAN

(ANSI) standard committee as well as unilaterally by compiler writers

and users. If any definitive standards emerge (or appear to) we will

follow them immediately. We will also track these studies and adopt the

good ideas that show up.

- 25 -

B. New Data Types

We need to allow our systems programmers to get near the host

machine without resorting to assembly code escape. Programming effi-

ciency requires a binary or bit string data type and our eventual goal of

conferencing as well as compiler development requires character strings.

a. Character strings are part of the 1976 Fortran revised standard and

are closely modelled after WATFIV. They are declared as:

CHARACTER * n identifier, ...

where n is the length of the string. The string "identifier" may be di-

mensional or provided with another ! *m" following the name to override

the given length.

Character string literals (constants) are delimited by apostrophes

or question marks. The left and right delimiters of a literal string must

be the same. This permits literals like:

X = 'HE SAID, "HELLO!'"

Y = "DON'T SAY AIN'T!"

Character string variables can be used in assignment statements, com-

parisons (with . EQ. and . NE. obviously, and with . LT. , etc., using the

machine's collating sequence), subroutine arguments, and in I/O lists

with A-Formats. A character string may also be named in place of a

Format line number in a READ or WRITE statement or in place of a data

set reference number in a READ or WRITE statement (this gives the

ENCODE/DECODE facility).

- 26 -

Special operators to be used for character strings are concatena-

tion which is denoted by / /: substring denotation which is given by

X(I:J) where I and J are integer-valued expressions, I giving the initial

character position of the substring of X and J the length; and the INDEX

function, where

INDEX (X, Y)

is the smallest value, I, such that X(I:LENGTH(Y)) = Y. If no such I

exists, then INDEX (X, Y) is zero.

The binary data type is the other new necessary addition. These

may be used as non negative n-bit numbers as well as n component binary

vectors. The declaration form is

BINARY *= n identifier, ...

as was used for CHARACTER. Binary data may be manipulated the same

way character strings are, with concatenation, substring, and index function

specified the same way. In addition, there are bit pattern functions for

AND, OR, EXCLUSIVE-OR, NEGATE, ROTATE, and SHIFT, to allow

functions that are normally performed at the assembly language level to

be expressed in a H.O. L.

Binary literals are sequences of 0's and l's, enclosed in apostrophes

or quotation marks, and followed by the letter B: '010110111'B. For

abbreviation, one may use hexadecimal notation with a sequence of hexa-

decimal digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F) in apostrophes or

quotation marks, followed by the letter X or H.

- 27 -

C. Syntactic Issues ("Sugar")

Comments take a modified PL/ 1 form: information on one card

between /* and */ are syntactically equivalent to a single blank. If the

*/ is missing from the card, then the remainder of the card following

/* is a comment, and the next card is not part of that comment.

Listing control will be by way of special pseudo cards detected by

the presence of a minus sign in column 1. Options are

EJECT

SINGLE SPACE

DOUBLE SPACE

OFF PRINT

ON PRINT

TITLE

Identifiers can be long names with the embedded break characted.

E. g. , THIS_IS_A_LONG_NAME.

Symbolic operators: since the characters > , < , &, etcetera

are available on our equipment (key punches and terminals) we will utilize

them instead of the less convenient, less mnemonic, . GT. , . LT. ,

. AND. , etcetera.

Superficial Syntax (lexical level syntax)

Programming language compilation resembles human information

processing in many aspects. At the most primitive levels of input, humans

- 28 -

receive sensations and computers receive individual characters; at a

higher level, where things can be thought about, humans receive percepts

(sensations integrated into connected, namable clumps) and computers

receive input data tokens (connected meaningful strings of input characters).

The superficial syntax of a programming language consists of the definition

• of what constitutes the tokens of the language. This is in contrast with

the usual notion of syntax given in, say, Backus-Naur-Form formation,

which defines the higher or conceptual levels of linguistic entities or

phrases, such as expressions, statements, blocks and programs. Our

goal is to produce an extensible language such that the user can specify

the higher syntax using the token rules according to superficial syntax,

along with some very simple guidelines.

Our superficial syntax is similar to that of PL/1. We approach this

by specifying several types of tokens and showing how they are detected.

Words are strings consisting of letters, digits, and break (_) characters.

Operators are strings consisting of the characters in the following string

+-*/$¢#?@/= <>!&%. Separators are the single characters , . ;:'

Blanks are needed to separate a pair of adjacent words or a pair of adjacent

operators. Between other pairs of adjacent tokens, blanks are optional and

serve no purpose other than human readability; a string of two or more

blanks is (almost) equivalent to a single blank.

There are two exceptions to the above rules: literals and comments.

Inside either of these constructs, all bets are off. A comment string is

- 29 -

and

syntactically identical to a single blank; it begins with the operator /* and

ends with the operator */. A literal is a self-defining value which is replaced

by the token detector by an internal name and is moved as a constant into

the object program unchanged. Literals begin with the operator

end with the operator The character strings inside comments and

literals are not processed by the token detector.

Definitions

One of the reasons for the above superficial syntax as opposed to

that of, say, FORTRAN, in which blanks are optional and permitted (almost)

everywhere, involves an extremely simple but most valuable language ex-

tension facility: that of replacable words.

A word (v. s.) can be DEFINED to be the same as a character string,

and the presence of such a word in the source is equivalent to the presence

of the string the word has been defined to stand for. This facility, by itself,

allows shorthand and parameterization. It is also an approach to

security, whereby programs can be written, symbolically referencing critical

numbers which can be guarded by themselves.

Such replacement can be done directly by the computer's token-detector

or by a second layer inserted above the token-detector and below the parser.

A further improvement, and a requirement for a useful implementation

language, which fits into this context, is macro processing.

E. THE PROBLEM OF OPTIMIZING EXTENDED CONSTRUCTS

Suppose that we define the "whole array" sum and product by -H-, ***.

We must avoid generating a temporary then a move for

- 30 -

A = A++B

One solution (cf. Cobol's "ADD B TO A") might look like this.

A := ++B

String concatenation poses the same problem. If S is a varying string,

what code comes from

S = S//T ?

Or if S, T, and U are fixed-length strings disjoint from eachother,

what about

S = T//U ?

This is the optimizing problem for high level languages.

In order to avoid these extraneous expensive temporary states of

computation there are two approaches we might take. One is described

above where operations are written as though the machine being program-

med were a 2-address machine (with operations X = f(X,Y)). The other

approach requires a top down code generator scheme, where we have a

parse tree given root-first rather than leaves-first. I. e. , this

Assignment

Target A

Expression ++

Left array A

Right array B

rather than

Left array A

- 31 -

Right array B

Operate ++

Target array A

Assignment

The root-first approach allows one to establish the context of an

operation before the operation is performed (generated). In this way,

more of the special cases will come to light and good, efficient code can

be generated. This still puts a burden on the definer who wants a specific

extension. However, the existence of a worked out method for efficiency

will permit possible effective use.

Notice also that the top-down parsing will allow us the power to

define an AND operator that permits evaluation only up to as far as

necessary, as in

P(1) AND P(2) AND P(3) AND P(4)

when the P's represent long calculations, and

IF ((A . NE. 0) AND (X/A . NE. B)).

where the falsity of the first condition implies the impossibility of

evaluating the second.

- 32 -

VI. The Communication Network

A. The conferencing system works by sending and receiving messages be-

tween the computer and individual members in a pseudo-simultaneous mode.

Any communication network that is desired with the members as nodes is

achieved by computer-simulating a messenger. If any non trivial structure

is required--and there almost always will be---the messenger needs to be sup-

plied with a network specification: who can do what, when, and to whom,

Formally, a communication network specification is a rule which asso-

ciates an action (or sequence of actions, i. e., subroutines) with a given

pattern of:

1. transaction originator or sender,

2. type of transaction requested,

3. requested recipient of the transaction,

4. state of the system.

Although this may sound like a request to be able to process every

imaginable crazy fluidic networking rule, we have in mind only a small

astronomical number of crazy fluidic network rules.

A Principal Simplification. Suppose that there are a small number on con-

ference members; a small set of transaction types, and a state independent

decision rule for legality and interpretation. In this case, the network

specification can be stored in a three-dimensional array of action names

(or identification numbers). The code

ACTION = NETSPEC (SENDER, RECEIVER, TRANSTYPE)

5

- 33 -

is all that is needed.

For larger member sets, we can use, say, a privilege level or a

subclass name instead of the fully identifying SENDER or RECEIVER code.

There are many possible variations on this theme. The various transaction

types, or categories, can have their own network matrices whose coordinates

are aspects of member types as above, but different aspects for different

transactions or types of transactions.

If the dependence on system state is so interpretable, it can be im-

plemented into a matrix-driven network specification by allowing the matrix

itself to vary as a function of system state change (e. g. , when time is al-

most up, all the members may do is vote on the main issues and send pri-

vate messages.)

In other cases, a simple rule can be put forth to determine the re-

sponse to a request, examples of this are the following:

1. In the ring of five subjects, a member may send a message to

another member if the two members are in the class of experi-

mental subjects and if their identification numbers differed by 1 or

4. Notice that this can be extended to larger sets of experimental

subjects and larger neighborhood sizes without a quadratic increase

in core requirement expected with a stored matrix.

2 Certain transaction- -e. g., private messages--might be legal if

and only if the two parties belong to the same sub class. In this

case, the matrix would be constant and needn't be stored; closely

- 34 -

related are transactions whose legality depends only upon an order

relation between some attributes of the parties; e. g. , one may be

able to send a non-refusable message to any member of lower

privileged class. This can be summarized by appeal to the follow-

ing FORTRAN examples.

Alternative I.

Generate a legality network matrix as follows:

LOGICAL NETWORK (5, 5)

DO 1000 I=1, 5

DO 2000 J=1, 5

NETWORK (I, = FALSE

2000 CONTINUE

1000 CONTINUE

DO 3000 C=1, 5

K=I+1

IF (K . GT. 5) K=K-5

NETWORK (I, K) = TRUE

3000 CONTINUE

Then the legality of a transaction from A to B can be established by

LEGAL = NETWORK (A, B)

Alternative II.

A matrix need not be generated in case of a simple rule, as follows:

DIFF = ABS (A, B)

LEGAL = (DIFF. EQ. 1).DR. (DIFF. EQ. 4)

- 35 -

B. Conference Participants as a Data Type

The conferencing mechanism involves handling communication between

the computer storage and any one of a large set of members of a particular

conference. Any subset of the member set may be on-line to the computer

at any given time, and the management of this collection is the principal

business of the conferencing system.

Conference members originate transactions and the system, simulating

a conference member, may also originate a transaction. Only certain trans-

actions are legal, and the legality as well as the interpretation for handling

them depends upon the type of the transactions, the attributes of the indi-

viduals, and the state of the system. Note that all of these aspects are dy-

namic and central to our problem area. Consequently, they are all appro-

priate candidates for data types in a language intended for the description

and support of conferencing systems.

Software development for conferencing support will be intimately

involved with the member data, especially at the conceptual high levels

(at the lower levels of detail elaboration meaning, are obscured and the

differences between applications is not evident).

Member data types contain a host of information (or allow one to

retrieve and use a host of information) about a member, such as:

The activity level,

The protocol involved in the current communication,

The privileged class.

This outline in in no way intended to prejudice the implementation strategy

- 36 -

or forms of coding representation of this data. In fact, it is essential that

such details be left unspecified and hidden or transparent to implementors,

for reasons of flexibility. Methods of access for retrieval and modification

of the data will be provided in terms of higher-level or functional constructs.

Furthermore, this data type will allow access to all information about a

member. So an extreme, but workable implementation would be simply

that of a key to the file of member data. More likely some compromise

will be made allowing much information to be maintained in core.

C. Textual Data

One of the most obvious needs of conferencing systems is the ability

to handle character string information in rather sophistocated ways.

There will be many different uses in which character strings will

appear, and many different forms they may take. The obvious ones are

those of variable length (cf. PL/1), or of distributed contents (where

substrings of a string are found in different sections of storage), or of

virtual existence (overlayed substrings of other strings). Here we propose

a novel string type that should appeal both to a systems programmer and a

computer conference spec writer.

Define a "Hyper-String" to include the notion of ordinary pedestrian

character strings that are manipulated as though they had no meaning; but

also allow another "font" to be mixed in with the usual font. Characters

in the new font need to be processed when their host character string appears

in certain contexts (especially as the object of our output verb).

Denote by ((the change to, and by)) the change from the "need-

- 37 -

to-be processed" font (assume double parens are never used in ordinary

text). We could get the following, whose meaning is crystal clear

MSG-TO-X:

HELLO THERE, ((NAME_OF (X))): I HOPE YOU ARE

HAVING A HAPPY ((DAY OF WEEK)).

I HAVE ((SIZE OF QUEUE (X)) THINGS TO TELL YOU. _

END -MSG.

- 38 -

6

VII.BRIDGE

Another example of the use of our envisioned V. H. O. L. is pro-

vided here. This example is not shown coded out in full detail; only

enough code is given to illustrate the case with which such a specification

can be made. We estimate that using such a V. H. O. L. (as contrasted

with assembly code or a language like BASIC) reduces the time to create

a bridge-monitoring session from man-months to man-days.

The bridge monitoring system services four people at their separate

interactive terminals, allowing them to play bridge. (Imagine people who

for some reason love bridge but can only get to a computer terminal;

they could play the game at their leisure by simply calling up a central

bridge playing service. This could cover handicapped people or busy

executives with 20 minutes to spare between meetings.)

A not uncommon college hazing practice has four upperclassmen

each sitting alone in their dormitory rooms while a poor freshman runs

between them dealing cards, taking their bids, gathering the tricks as

played, and keeping score. This computerized system simulates the

hazee.

PLAY A RUBBER:

INITIALIZE SCORE;

CHOOSE DEALER;

UNTIL NS = 2 OR EW = 2: PLAYA HAND.

END OF PLAY A RUBBER.

- 39 -

PLAY A HAND:

SHUFFLE;

DEAL;

BID;

UNLESS NO BID, PLAY;

UPDATE SCORE;

ROTATE DEAL;

END OF PLAY A HAND.

DEAL:

GIVE N & SCOREBOARD N'S HAND 	CARDS(1. . 13), SORTED

GIVE E & SCOREBOARD E'S HAND 	CARDS(14. . 26), SORTED

GIVE S & SCOREBOARD S'S HAND 	CARDS(27. 39), SORTED

GIVE W & SCOREBOARD W'S HAND 	CARDS(40. . 52), SORTED

END OF DEAL.

SHUFFLE:

RANDOMIZE CARDS(1. . 52)

END OF SHUFFLE.

BID:

WHEN ANY PLAYER ASKS "REVIEW', GIVE SCOREBOARD BIDS;

BIDDER IS DEALER;

LAST BID IS NOTHING;

PASS COUNT IS ZERO;

- 40 -

REPEAT UNTIL PASS COUNT IS 3

ASK BIDDER FOR NEWBID UNTIL VALID

(NEWBID, OLDBID)

GIVE ALL PLAYERS: "((BIDDER)) BID ((NEWBID))"

ADD NEWBID TO SCOREBOARD BIDS

IF NEWBID IS "PASS" ADD 1 TO PASS COUNT

IF NEWBID NOT "PASS" LASTBID IS NEWBID

BIDDER IS PLAYER AFTER BIDDER

GIVE ALL PLAYERS: "THE CONTRACT IS ((LASTBID)). "

DETERMINE WINNER; LEADER IS PLAYER AFTER WINNER;

DUMMY IS PLAYER AFTER LEADER;

GIVE ALL PLAYERS: "THE HAND WILL BE PLAYED BY

((WINNER)). "

END OF BID.

PLAY: NEW AND WHEN ANY PLAYER SAYS "BOARD",

GIVE ALL PLAYERS "DUMMY"S HAND IS: ((SCOREBOARD

DUMMY'S HAND))",

DO 13 TIMES:

A(1) IS LEADER; A(I+1) IS PLAYER AFTER A(I),

I = 1.. 3;

ELICIT I-TH CARD FROM I = 1. .4

COMPUTE TRICK WINNER (NEW LEADER)

END OF PLAY.

- 41 -

SCOREBOARD DATA STRUCTURE:

CARD(1. . 52)

ORDERED VALUES:

C-2, 	 C-9, C-10, C-J, C-Q, C-K, C-A

D-2, 	 D-9, D-10, D-J, 	D-K, D-A

H-2, 	 H-9, H-10, H-J, H-Q, H-K, H-A

S-2, 	 S-9, S-10, S-J, S-Q, S-K, S-A

NUMERICAL VALUES:

WE (ABOVE, BELOW, GAMES, TRICKS)

THEY (ABOVE, BELOW, GAMES, TRICKS)

BIDSEQUENCE:

CONTRACT:

SUIT, NUMBER, WINNER, DUMMY

HANDS: N(1. . 13), E(1. . 13), S(1. . 13), W(1. . 13).

END OF SCOREBOARD.

VIII EXAMPLES OF COMMUNICATION STRUCTURES AND CONCLUSION

To keep in mind the goals of our project--that of being able easily

to describe the construction of human communication structures--we

herein provide a catalog (rather unstructured list) of possible such structures.

Of course, our paradigm is the existing conferencing systems (e. g.,

EMISARI, EIE, bell Canada, etc.), but these need to be generalized in

the same way that any scientific computer program may be a paradigm

for the generalized FORTRAN or Algol implementation structure.

A. Communication Structures:

1. games, like: Bridge, Backgammon, Scrabble, Monopoly, Battleship

2. Robert's-rules-of-order meetings (one conferee is a parliamentarian)

3. courts of law, with lawyers, judge, jury, witnesses, etc.

4. multi-lingual conferences (some conferees are translators)

5. magazine editorial staff

6. college faculty committees

7. delphi studies

8. panel of expert consultants and their customers

9. auctions

10. stamp-collectors' club trading session

11. team report writing

12. psychological counselling

13. tutoring

14. students' study session

- 43 -

15. writing, testing, and refining CAI systems

16. market research survey taking

17. TV script-writing

18. labor negotiations

19. modeling and simulation

20. routing slips with predetermined order (or partial ordering) and cancella-

tion privilege

21. realtor' s network ("MLS")

22. problem-solving network

23. research teams (including directors, technicians, clericals)

24. document de-classification procedure (cf. Privacy Act of 1974)

25. collective intelligence structures

26. brainstorming

27. mail

28. demanding questions

29. office business

- 44 -

B. SUMMARY

Our goal includes gaining the ability to construct such example sys-

tems with the same effort and time delay that it currently takes an engi-

neer to construct a 100 - to - 1000 - line FORTRAN programmer. That is,

the design and skeleton is together in a week; in one or two man months,

the system is in working order, able to produce usable results.

- 45 -

IX. REFERENCES

Anderson, P.G. A Structured Approach to Computerized Conferencing
Proc. 1975 Symp. on Computer Networks:
Trends and Applications. pp 61-68

Anderson, P.G. and John Ryon III
"A language for describing human communication
Structures", Proc. 1976 ICCC. pp 222-279

Bales, R.F. and Strodtbeck, F.L.
Phases in Group Problem Solving, J. Abnorm. & Soc.
Psych. 46:485-495

Bales, R.F. 	A Set of Categories for the Analysis of Small
Group Interaction. Am. Soc. Rev., 15:257-263

Bales, R.F. 	Interaction Analysis: A Method for the Study
1950b 	of Small Groups. Reading, Mass.: Addison-Wesley,

1950.

Bavelas, A. 	Communication Patterns in Task-oriented Groups.
1950 	J. Accoustical Soc. Am. 22:725-730.

Carter, George "Planning Computer-based Conferencing Systems",
University of Illinois.

Chapanis, Alphonse "Interactive Human Communication"

Day, L. 	 Computer Conferencing: An Overview, in Computer
Communication: Views from ICCC '74

Engelbart, D.C. "Augmenting Human Intellect: Experiments, Concepts,
and Possibilities", Stanford Research Institute,
March 1975.

Hall, T.W. 	Implementation of an Interactive Conference System,
Proceedings of the 1971 Spring Joint Computer Confer-
ence.

Hiltz, Roxanne "The potential social impact of some near future
developments in computer conferencing", World
Futures Society Panel on "Electronic Links for
Invisible Colleges", June 4, 1975.

Hiltz, Roxanne "Communication and group decision-making", NJIT-
Sept. 1975

Hough, R.W. 	"Teleconferencing System: A State of the Art survey
and preliminary analysis", Stanford Research Institute,
May, 1976

Johansen, Robert Pitfalls in the Social evaluation of teleconferencing
media, Second Annual Int'l Communications Conference

Language and Systems Development, Inc. "XBASIC for
Univac 1100 series computer", 1971

-46-

Leavitt, H.J. 	Some Effects of Certain Communication Patterns On
1951 	Group Performance. J. Abnorm. & Soc. Psych. 46:38-50

Martin, Shirley M., et al
"Practical experience in computer based message
systems", U.S.Army Material Development and Readiness
Control, Alexandria, Va.

Nilles, Jack J. "Telecommuting--an alternative to urban transporta-
tion congestion", IEEE Trans on System Man and
Cybernetics, Feb. 1966

Panko, Raymond R. "The outlook for computer message services:
a preliminary assessment", STanford Research
Institute, March 1976

Scher, J.M. 	"The Constrained Computerized Conference--A Method-
ological Tool for the Implementation of Simulation
Games", Proc ICCC, Aug 1976, pp230-235.

Shaw, J.C. 	"JOSS: experience with an experimental computing
service for users at remote typewritten consoles°

Shaw, J.C. 	Some Effects of Unequal Distribution of Information
1954 	 upon Group Performance in Various Communication Nets.

Shaw, J.C. 	"Communication Networks: in Berkowitz Leonard, (eds.)
1964 	 Advances in Experimental Social Psychology. Vol 1 NY

Academic Press, pplll-l47.

Shore, J.W. 	"C.M.I. Conferencing Phase 2: An Instruction Manual",
Bell Northern Research, April 1974, TR3C30-1-74.

Stanford Research 	"NLS-8 Glossary", Augmentation Research Center
Institute 	July 1975.

Knowledge Workshop Development, Jan 1976

"NLS-8 Command Summary" May 1975

Turoff, Murray "The cost and revenue of computerized conferencing",
Proc ICCC, Aug 1976 pp214-221

Computerized Conferencing and Real Time Delphis.
Second Int'l Conference on Computers and Communica-
tions, Aug 1974.

"Party-Line" and discussion, Computerized Conference
Systems. Int'l Conference on Computer Communications,
IEEE, Oct 1972

"Computerized Conferencing and the Homebound Handi-
capped", NJIT May 1976.

- 47 -

	Cover
	Title
	Table of Contents
	Introduction
	General Language Requirements
	Extensible Language
	Examples of the Utility of an Extension Mechanism
	An Implementation Technique
	The Communication Network
	Bridge
	Examples of Communication Structures and
Conclusions
	References

